

# ioNODE Series LoRa End Device RF Module

MiniMOD\_2.0

Datasheet

Document Version: SSTPL/HW/EDDS/MMD/2.0.2



## Table of Contents

| 1. Brief Description                                      |    |
|-----------------------------------------------------------|----|
| 1.1 Key Features                                          | 3  |
| 1.2 Applications                                          | 3  |
| 2. MODULE OVERVIEW                                        | 4  |
| 3. ELECTRICAL CHARACTERISTICS                             | 5  |
| 3.1 Absolute Maximum Ratings                              | 5  |
| 3.2 General Electrical Characteristics                    | 5  |
| 3.3 Module Interface Characteristics                      | 6  |
| 3.4 Transmitter RF Characteristics                        | 6  |
| 4. MODULE PACKAGE                                         | 7  |
| 4.1 Module Dimensions                                     | 7  |
| 4.2 Pinout Description                                    |    |
| 5. RF Test Report                                         | 9  |
| 5.1 Effective Radiated Power (ERP)                        | 9  |
| 5.2 Maximum Effective Radiated Power spectral density     | 10 |
| 5.3 Unwanted emissions in the spurious domain for Tx mode | 11 |
| 5.4 Occupied Bandwidth                                    | 12 |
| 6. Antenna Mounting Options                               | 13 |
| 7. IMPORTANT NOTICE                                       | 14 |
| 7.1 Disclaimer                                            | 14 |
| 7.2 Contact Information                                   | 14 |



## **1. Brief Description**

MiniMOD\_2.0 is a compact, low cost, low power wide area network (LPWAN) wireless module that supports the Semtech LoRaWAN<sup>®</sup> long range wireless protocol.

This new stand-alone module measures just 28\*23 mm, is constructed in a metal shielded package and comprises a Semtech SX1272 ultra-long range spread spectrum wireless transceiver and STM32 series ARM Cortex-M0 + 32 Bit microcontroller (MCU). The MiniMOD\_2.0 module complies with the latest LoRaWAN® Class A & C protocol specifications; it is simple to access LoRaWAN® IoT platforms.

#### 1.1 Features

- RF output power up-to +20 dBm.
- It supports LoRa<sup>®</sup> Point to Point communications as well as LoRaWAN<sup>®</sup> protocol.
  Different Firmware required.
- Built-in EEPROM, data kept unchanged even powered off.
- Small size (28\*23 mm)
- Wide range of working voltage 3V to 3.7 V, Option of 5V supply on different pin
- Sensitivity -137dBm
- Wide range of temperatures -40°C to +85°C.

#### **1.2 Applications**

Typical applications for this module include smart metering, wearables, tracking, M2M and internet of things (IoT) edge nodes.

The module's applications are as following -

- Automated Meters Reading
- Home and Building Automation
- Wireless Alarm and Security Systems
- Industrial Monitoring and Control
- Long Range Irrigation Systems



## 2. Module Overview:

MiniMOD\_2.0 is an ultra-long range, high-performance, RF module for wireless communication. It operates in the license free 865-867 MHz ISM frequency band and includes all necessary passive components for wireless communication as depicted in the following figure.



| Frequency range       | 865 to 867 MHz                         |
|-----------------------|----------------------------------------|
| Modulation            | LoRa <sup>®</sup> Spread-Spectrum      |
| RF output power       | Up to 20 dBm                           |
| Receiver sensitivity  | -137 dBm (SF 12; SB 125 kHz, CR 4/6)   |
| RF data rate          | 0.24 to 5 kbps                         |
| RF range              | up to 5000 m (line of sight)           |
| Operating voltage     | 3 V to 3.7 V, Separate 5V option       |
| Current consumption   | < 10 µA (module in sleep, RTC running) |
|                       | 23 mA (Rx)                             |
|                       | 123 mA (Tx mode)                       |
| Interfaces            | UART, SPI, I2C                         |
| IO's                  | Digital IOs                            |
|                       | Analog Inputs                          |
| Dimension             | 28x23 mm                               |
| Operating temperature | -40°C to +85°C                         |



## **3. Electrical Characteristics**

## 3.1 Maximum Ratings

| Condition                                                       | Min     | Тур. | Max | Unit |  |
|-----------------------------------------------------------------|---------|------|-----|------|--|
| Supply Voltage (VDD)                                            | 3.0     | 3.5  | 3.7 | V    |  |
| Storage Temperature                                             | -40     | +25  | +85 | °C   |  |
| Operating Temperature                                           | -40     | +25  | +85 | °C   |  |
| RF Input Power                                                  | +10 dBm |      |     | dBm  |  |
| ESD (Human Body Model)                                          | 2000 V  |      |     | V    |  |
| ESD (Charge Device                                              | 500     | 500  |     |      |  |
| Model)                                                          | Aodel)  |      |     |      |  |
| Notes:                                                          |         |      |     |      |  |
| 1) Unless otherwise noted, all voltages are with respect to GND |         |      |     |      |  |

### **3.2 General Electrical Characteristics**

| T = 25°C, VDD = 3.3 V (typ.) if nothing else stated |                   |          |      |     |      |
|-----------------------------------------------------|-------------------|----------|------|-----|------|
| Parameter                                           | Condition         | Min      | Тур. | Max | Unit |
| Supply Voltage (VD                                  | D)                | 2.8      | 3.3  | 3.6 | V    |
| Current                                             | TRX idle mode     | e,       | 10   |     | μA   |
| Consumption                                         | µC idle mode      | 9        |      |     |      |
| System IDLE                                         |                   |          |      |     |      |
| Current                                             | TRX receive mode, |          | 23   |     | mA   |
| Consumption                                         | µC sleep mode     |          |      |     |      |
| RECEIVE LoRa                                        |                   |          |      |     |      |
| Current                                             | TRX transmit r    | node,    | 123  |     | mA   |
| Consumption                                         | µC sleep mod      | de,      |      |     |      |
| transmit                                            | all µC units of   | f,       |      |     |      |
|                                                     | max. RF powe      | er level |      |     |      |
| MCU operation frequency 32 MHz & 32.768 KHz         |                   |          |      |     |      |



### **3.3 Module Interface Characteristics**

| Symbol | Parameter                                   | Conditions                                                            | Min.      | Max. | Unit |
|--------|---------------------------------------------|-----------------------------------------------------------------------|-----------|------|------|
| VOL    | Output Low level voltage for<br>an I/O pin  | CMOS port,                                                            | -         | 0.4  | V    |
| VOH    | Output High level voltage for<br>an I/O pin | $100 = +8 \text{ MA}$ $2.8 \text{V} \le \text{VDD} \le 3.7 \text{V}$  | VDD - 0.4 | -    |      |
| VOL    | Output Low level voltage for<br>an I/O pin  | TTL port,<br>IIO = +8 mA<br>2.8V ≤ VDD ≤ 3.7V                         | -         | 0.4  | V    |
| VOH    | Output High level voltage for<br>an I/O pin | TTL port<br>IIO = -6 mA<br>$2.8V \le VDD \le 3.7V$                    | 2.4       | -    | V    |
| VOL    | Output Low level voltage for<br>an I/O pin  | $IIO = +15 \text{ mA}$ $2.8V \le VDD \le 3.7V$                        | -         | 1.3  | V    |
| VOH    | Output High level voltage for<br>an I/O pin | IIO = -15 mA<br>2.8V ≤ VDD ≤ 3.7V                                     | VDD-1.3   | -    | V    |
| VOL    | Output Low level voltage for<br>an I/O pin  | IIO = +4 mA<br>1.65V ≤ VDD ≤ 3.7V                                     | -         | 0.45 | V    |
| VOH    | Output High level voltage for<br>an I/O pin | $IIO = -4 \text{ mA}$ $1.65 \text{V} \le \text{VDD} \le 3.7 \text{V}$ | VDD-0.45  | -    | V    |
|        | Output low level voltage for                | $IIO = 20 \text{ mA}$ $2.8 \text{V} \le \text{VDD} \le 3.7 \text{V}$  | -         | 0.4  | V    |
|        | an FTf I/O pin in FM+ mode                  | $I_{IO} = 10mA$<br>1.65V $\leq V_{DD} \leq 3.7V$                      | -         | 0.4  | , v  |

### 3.4 Transmitter RF Characteristics

| T = 25°C, VDD = 3 V (typ.), 866 MHz if nothing else stated |              |      |       |      |     |
|------------------------------------------------------------|--------------|------|-------|------|-----|
| Parameter                                                  | Min          | Тур. | Max   | Unit |     |
| Frequency Range                                            | 865          | -    | 867   | MHz  |     |
| RF Output Power - 865                                      | 18.5         | 19.5 | 20    | dBm  |     |
| Modulation Techniques                                      |              |      | LoRam |      |     |
| TX Frequency                                               | -40 to +85°C | -    | ±10   | -    | kHz |
| Variation vs.                                              |              |      |       |      |     |
| Temperature                                                |              |      |       |      |     |
| TX Power Variation vs.                                     | Temperature  | -    | ±0.5  | -    | dB  |



## 4. Module Package

### 4.1 Module Dimension



## 4.2 Pinout

Description

| PIN | PIN Name | PIN Type | MCU Pin  | 5 V       | Description  |
|-----|----------|----------|----------|-----------|--------------|
|     |          |          | (number) | Tolerance |              |
| 1   | PA3      | DI/O     | PA3      | Yes       | ADC IN3      |
| 2   | GND      | Supply   |          |           | Ground       |
|     |          |          |          |           | connection   |
| 3   | PA4      | DI/O     | PA4      | Yes       | SPI1_NSS     |
| 4   | GND      | Supply   |          | No        | Ground       |
|     |          |          |          |           | connection   |
| 5   | VDD1     | Supply   |          | No        | Main Supply  |
| 6   | TXD      | DI/O     | PA9      | No        | Digital IO / |
|     |          |          |          |           | USART1-TX    |
| 7   | RXD      | DI/O     | PA10     | No        | Digital IO / |
|     |          |          |          |           | USART1-RX    |

MiniMOD\_2.0 Datasheet, Copyright SSTPL, India Document Version: SSTPL/HW/EDDS/MMD/2.0.2



| 8    | Boot                | D IN          | BOOTO  | No   | Bootloader Pin      |
|------|---------------------|---------------|--------|------|---------------------|
|      |                     |               |        |      | 0, internally       |
|      |                     |               |        |      | pulled-down by      |
|      |                     |               |        |      | 47 kΩ               |
| 9    | nRst                | D IN          | NRST   | NO   | NReset,             |
|      |                     |               |        |      | internally pulled-  |
|      |                     |               |        |      | up by 47 k <b>Ω</b> |
| 10   | GND                 | Supply        |        |      | Ground              |
|      |                     |               |        |      | connection          |
| 11   | PB11                | DI/O          | PB11   | Yes  | LPUART1_RX/         |
|      |                     |               |        |      | LPUART1 TX/         |
|      |                     |               |        |      | 12C2 SDA (Ext.      |
|      |                     |               |        |      | pullup required)    |
| 12   | PB10                | DI/O          | PB10   | Yes  | LPUART1_TX/         |
|      |                     | , -           | -      |      | LPUART1 RX/         |
|      |                     |               |        |      | 12C2 SCL (Ext.      |
|      |                     |               |        |      | pullup required)    |
| 13   | VddO                | Supply        |        |      | 3 3V out up-to      |
|      |                     | 000017        |        |      | 20 mA               |
| 14   | GND                 | Supply        |        |      | Ground              |
|      | OND                 | 00001         |        |      | connection          |
| 15   | .5V                 | Supply        |        |      | 5V input to 3.3V    |
|      | 0,                  | 000017        |        |      |                     |
| 16   | PA13                | D I/O         | PA13   | Yes  | SWDIO               |
| 17   | PA14                | D I/O         | PA14   | Yes  | SWCLK               |
| 18   | VDDO                | vlaguZ        |        |      | 3.3V out up-to      |
|      |                     |               |        |      | 20 mA               |
| 19   | VDDO                | Supply        |        |      | 3.3V out up-to      |
|      |                     |               |        |      | 20 mA               |
| 20   | GND                 | Supply        |        |      | Ground              |
|      | 0.12                |               |        |      | connection          |
| 21   | PA15                | D1/0          | PA12   | Yes  | SPI1_NSS/Digital    |
| 2.   | 17.10               |               | 17.112 | 100  |                     |
| 22   | PB3                 | Supply        | PB3    | Yes  | SPI1_SCK/           |
|      | 1 20                | 000017        | 1 20   | 100  | USART5 TX           |
| 23   | PR4                 |               | PR4    | Yes  |                     |
| 20   |                     | 01,0          |        | 105  | USART5 RX           |
| 24   | PR5                 |               | PB5    | Vec  |                     |
| 25   | PRQ                 |               | PB8    | Yes  |                     |
| 25   | PRO                 |               | PRO    | Vec  |                     |
| 20   |                     | Supply        |        | 103  | Ground              |
| 21   |                     | soppiy        |        |      | connection          |
| 20   | DE                  |               |        |      |                     |
| 20   | ΚΓ                  |               |        |      | EXIGINAL SUL        |
|      |                     |               |        |      |                     |
| - 00 |                     | Course to the |        |      | Connection          |
| 1 /9 | $\left( -N\right) $ | I SUDDIV      |        | I NO | Ground              |
| 27   | OT IB               | 000001        |        |      |                     |



## 5. RF Test Report (Conducted Measurement)

**EUT Test Configuration:** - Transmit on Max power on each 125 KHz Channel, Transmission on 1<sup>st</sup>, Mid and Last channel in each 15 minutes.

**EUT Height:** - 0.8m from Ground (EUT placed on nonconductive table).

Voltage: - + 3.5V DC

EUT antenna port connected to RF connector.

## 5.1 Effective Radiated Power (ERP)



Observation Graph: - ERP Channel 5 (865.985 MHz)



### **Observation Table: -**

| Channel<br>Frequency<br>(MHz) | ERP<br>Measured (A)<br>(dBm) | Correction Factor<br>(F): = Attenuator(B)+<br>Cable loss (C)<br>(dB) | ERP<br>Standard<br>Limit India<br>(dBm) | ERP Calculated<br>(D) = (A+F)<br>(dBm) | EIRP<br>Calculated<br>= D+E<br>(dBm) | Result |
|-------------------------------|------------------------------|----------------------------------------------------------------------|-----------------------------------------|----------------------------------------|--------------------------------------|--------|
| 865.985                       | 8.86*                        | 10.64                                                                | 36                                      | 19.46                                  | 21.61                                | Pass   |

| B = Cable loss (dB)            | 0.83 |
|--------------------------------|------|
| C = Attenuator correction (dB) | 9.81 |
| E = EUT Antenna Gain (dBi)     | 2.15 |

#### \*10 dB Attenuator is used on receiver

#### 5.2 Maximum Effective Radiated Power Spectral Density

#### **Observation Graph:** - Maximum Effective Radiated Power Spectral Density.





### **Observation Table:** -

| Serial<br>No. | Centre<br>Frequency<br>(MHz) | Power Spectral<br>Density Measured (A)<br>(dBm/100KHz) | Correction Factor (F):<br>= Cable loss(B) +<br>Attenuators (C) (dBm) | Power Spectral<br>Density calculated<br>(A+F)(dBm/100KHz) |
|---------------|------------------------------|--------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------|
| 1             | 865.05                       | -39.165                                                | 30.26                                                                | -8.905                                                    |
| 2             | 865.40                       | -39.116                                                | 30.26                                                                | -8.856                                                    |
| 3             | 865.58                       | -39.259                                                | 30.26                                                                | -8.999                                                    |
| 4             | 865.75                       | -39.102                                                | 30.26                                                                | -8.842                                                    |
| 5             | 865.98                       | -39.495                                                | 30.26                                                                | -9.235                                                    |
| 6             | 866.33                       | -39.447                                                | 30.26                                                                | -9.187                                                    |
| 7             | 866.50                       | -39.291                                                | 30.26                                                                | -9.031                                                    |
| 8             | 866.65                       | -39.267                                                | 30.26                                                                | -9.007                                                    |

| B = Cable loss (dB)            | 0.83  |
|--------------------------------|-------|
| C = Attenuator correction (dB) | 29.43 |

\*30 dB Attenuator is used on receiver

## 5.3 Unwanted emissions in the spurious domain for Tx mode

**Observation Table:** - Unwanted emission in the spurious domain of Mid Channel (865.9850 MHz)

| Serial<br>No. | Frequency<br>(MHz) | Spurious Level<br>Measured(A)<br>(dBm) | Cable loss +<br>attenuators(C)<br>(dB) | Standard<br>Limit<br>(dBm) | Spurious level<br>Including correction<br>factors: A+B+C (dBm) | Result |
|---------------|--------------------|----------------------------------------|----------------------------------------|----------------------------|----------------------------------------------------------------|--------|
| 1             | 1731.970           | -76.45                                 | 30.44                                  | -30                        | -46.01                                                         | Pass   |
| 2             | 2597.955           | -75.40                                 | 30.81                                  | -30                        | -44.59                                                         | Pass   |
| 3             | 3463.940           | -74.81                                 | 31.07                                  | -30                        | -43.74                                                         | Pass   |
| 4             | 4329.925           | -70.03                                 | 30.76                                  | -30                        | -39.27                                                         | Pass   |
| 5             | 5195.910           | -70.09                                 | 31.47                                  | -30                        | -38.62                                                         | Pass   |





### **Observation Graph:** - Unwanted emission in the spurious domain of Mid Channel (865.9850 MHz).

### 5.4 Occupied Bandwidth

#### **Observation Table:** -

| Channel Frequency | Occupied bandwidth | Standard Limit | Result |
|-------------------|--------------------|----------------|--------|
| (MHz)             | Measured (KHz)     | (KHz)          |        |
| 866.9467          | 125.00             | < 200          | Pass   |







## 6. Antenna Mounting Options

To serve the propose of multiple antenna requirement, MiniMOD\_2.0 comes with multiple options. Below are the MiniMOD\_2.0 Antenna options:

- 1. Connect an external antenna thru the UFL connector mounted on PCB. It can be Simply connected thru a UFL Pigtail to antenna of your choice. Here  $50\Omega$  impedance matched antenna will work.
- 2. Through Hole Spring Helical antenna can also be used if antenna needs to be integral part of module. Just unmount the UFL connector and used through hole beneath the UFL connector pad to connect Spring Helical or other wire antenna. The recommend thick ness of wire is 0.7 to 0.9 mm to get it mounted in the PCB hole.
- MiniMOD\_2.0 has edge half cut pads to extend the RF signals on Daughter Board PCB and antenna can be mounted separately on DB PCB. Here needs to take care the 50Ω impedance characteristics of the RF track.



## 7. Important Notice

#### 6.1 Disclaimer

SSTPL points out that all information in this document is given on an "as is" basis. No guarantee, neither explicit nor implicit is given for the correctness at the time of publication. SSTPL reserves all rights to make corrections, modifications, enhancements, and other changes to its products and services at any time and to discontinue any product or service without prior notice. It is recommended for customers to refer to the latest relevant information before placing orders and to verify that such information is current and complete. All products are sold and delivered subject to "General Terms and Conditions" of SSTPL, supplied at the time of order acknowledgment.

SSTPL assumes no liability for the use of its products and does not grant any licenses for its patent rights or for any other of its intellectual property rights or third-party rights. It is the customer's duty to bear responsibility for compliance of systems or units in which products from SSTPL are integrated with applicable legal regulations. Customers should provide adequate design and operating safeguards to minimize the risks associated with customer products and applications. The products are not approved for use in life supporting systems or other systems whose malfunction could result in personal injury to the user. Customers using the products within such applications do so at their own risk.

Any reproduction of information in datasheets of SSTPL is permissible only if reproduction is without alteration and is accompanied by all given associated warranties, conditions, limitations, and notices. Any resale of SSTPL products or services with statements different from or beyond the parameters stated by SSTPL for that product/solution or service is not allowed and voids all express and any implied warranties. The limitations on liability in favour of SSTPL shall also affect its employees, executive personnel, and bodies in the same way. SSTPL is not responsible or liable for any such wrong statements.

Copyright © 2018, SSTPL

#### 6.2 Contact Information

#### Sehaj Synergy Technologies Pvt. Ltd. (SSTPL)

Indu Bhawan, J-9/J-7/3, Bhagwan Marg, Swage Farm, New Sanganer Road, Sodala, Jaipur-302019, Rajasthan, India

T: +911414017908 M: +91 8890200333 E: info@sstpl.net.in Web: www.sstpl.in